P(A|B) = P(A) ⇒ P(B|A) = P(B)

By definition of \(P(A|B)\):

\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \]

If \(P(A|B) = P(A)\):

\[ P(A) = \frac{P(A \cap B)}{P(B)} \]

Rearranging the above:

\[ P(B) = \frac{P(A \cap B)}{P(A)} \]

Since \(\frac{P(A \cap B)}{P(A)} = P(B|A)\):

\[ P(B) = \frac{P(A \cap B)}{P(A)} \implies P(B) = P(B|A) \]

Styles

(uses cookies)